Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System
نویسندگان
چکیده
The applicability of the Parareal parallel-in-time integration scheme for the solution of a linear, two-dimensional hyperbolic acoustic-advection system, which is often used as a test case for integration schemes for numerical weather prediction (NWP), is addressed. Parallel-in-time schemes are a possible way to increase, on the algorithmic level, the amount of parallelism, a requirement arising from the rapidly growing number of CPUs in high performance computer systems. A recently introduced modification of the " parallel implicit time-integration algorithm " could successfully solve hyperbolic problems arising in structural dynamics. It has later been cast into the framework of Parareal. The present paper adapts this modified Parareal and employs it for the solution of a hyperbolic flow problem, where the initial value problem solved in parallel arises from the spatial discretization of a partial differential equation by a finite difference method. It is demonstrated that the modified Parareal is stable and can produce reasonably accurate solutions while allowing for a noticeable reduction of the time-to-solution. The implementation relies on integration schemes already widely used in NWP (RK-3, partially split forward Euler, forward-backward). It is demonstrated that using an explicit partially split scheme for the coarse integrator allows to avoid the use of an implicit scheme while still achieving speedup.
منابع مشابه
A numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملSimulations of transport in one dimension
Advection-dispersion equation is solved in numerically by using combinations of differential quadrature method (DQM) and various time integration techniques covering some explicit or implicit single and multi step methods. Two different initial boundary value problems modeling conservative and nonconservative transports of some substance represented by initial data are chosen as test problems. ...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملParallel Algorithms for Semi-Lagrangian Advection
Numerical time-step limitations associated with the explicit treatment of advection-dominated problems in computational uid dynamics are often relaxed by employing Eulerian-Lagrangian methods. These are also known as semi-Lagrangian methods in the atmospheric sciences. Such methods involve backward time integration of a characteristic equation to nd the departure point of a uid particle arrivin...
متن کاملParallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit
The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.02237 شماره
صفحات -
تاریخ انتشار 2015